Equivariant Quantum Schubert Polynomials
نویسندگان
چکیده
We establish an equivariant quantum Giambelli formula for partial flag varieties. The answer is given in terms of a specialization of universal double Schubert polynomials. Along the way, we give new proofs of the presentation of the equivariant quantum cohomology ring, as well as Graham-positivity of the structure constants in equivariant quantum Schubert calculus.
منابع مشابه
Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula
We study the algebraic aspects of equivariant quantum cohomology algebra of the flag manifold. We introduce and study the quantum double Schubert polynomials S̃w(x, y), which are the Lascoux– Schützenberger type representatives of the equivariant quantum cohomology classes. Our approach is based on the quantum Cauchy identity. We define also quantum Schubert polynomials S̃w(x) as the Gram–Schmidt...
متن کاملv 1 1 7 O ct 1 99 6 Quantum Schubert polynomials and the Vafa – Intriligator formula
We introduce a quantization map and study the quantization of Schubert and Grothendieck polynomials, monomials, elementary and complete polynomials. Our construction is based on the quantum Cauchy identity. As a corollary, we prove the Lascoux–Schützenberger type formula for quantum Schubert polynomials of the flag manifold. Our formula gives a simple method for computation of quantum Schubert ...
متن کاملGröbner geometry of Schubert polynomials
Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...
متن کاملFe b 20 02 Gröbner geometry of Schubert polynomials
Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...
متن کاملQuantum Cohomology of G/p and Homology of Affine Grassmannian
Let G be a simple and simply-connected complex algebraic group, P ⊂ G a parabolic subgroup. We prove an unpublished result of D. Peterson which states that the quantum cohomology QH∗(G/P ) of a flag variety is, up to localization, a quotient of the homology H∗(GrG) of the affine Grassmannian GrG of G. As a consequence, all three-point genus zero Gromov-Witten invariants of G/P are identified wi...
متن کامل